Grain Growth after Intercritical Rolling

نویسندگان

  • R. Petrov
  • L. Kestens
  • K. Verbeken
  • Y. Houbaert
چکیده

The distribution of the characteristic texture components between the ferrite grains of different size classes has been studied in a steel with 0.082%C, 1.54% Mn, 0.35% Si, 0.055%Nb and 0.078%V after different rolling schedules with a final rolling temperature above or below Ar3. Microstructures and textures were characterized by means of optical microscopy and orientation microscopy. A strong grain refining effect together with a bimodal grain size distribution was observed in the steel both after final rolling in the intercritical region or in the austenite region, close to the Ar3 temperature. The differences in grain size were interpreted on the basis of three potentially acting mechanisms: (i) transformation-induced recrystallization, (ii) increased mobility of specific grain boundaries and (iii) fast nucleation of ferrite grains on specific sites of the parent austenite microstructure. The experimental data clearly favoured the third of these assumptions as the responsible mechanism for the observed bimodal grain size distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Intercritical Annealing Time on the Microstructures and Mechanical Properties of an Ultrafine Grained Dual Phase Steel Containing Niobium

An ultrafine grained dual phase (UFG DP) steel containing niobium was produced by a new route utilizing simple cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting structures. The effects of intercritical holding time on the microstructural evolutions and mechanical properties were studied. The results showed that increasing intercritical holding time enhnac...

متن کامل

Processing of Fine-Grained DP300/600 Dual Phase Steel from St12 Structural Steel by the Thermo-Mechanical Processing of Cold Rolling and Intercritical Annealing

The effect of microstructural refinement and intercritical annealing on the mechanical properties and work-hardening response of a low carbon St12 steel was studied. It was revealed that intercritical annealing of the ferritic-pearlitic sheet results in the formation of a coarse-grained DP microstructure with discrete martensite islands normally formed in place of pearlitic colonies, which resu...

متن کامل

Grain Refinement of Dual Phase Steel via Tempering of Cold-Rolled Martensite

A microstructure consisting of ultrafine grained (UFG) ferrite with average grain size of ~ 0.7 µm and dispersed nano-sized carbides was produced by cold-rolling and tempering of the martensite starting microstructure in a low carbon steel. Subsequently, fine grained dual phase (DP) steel consisting of equiaxed ferrite grains with average size of ~ 5 µm and martensite islands with average size ...

متن کامل

Ultra-Fine Grained Dual-Phase Steels

This paper provides an overview on obtaining low-carbon ultra-fine grained dual-phase steels through rapid intercritical annealing of cold-rolled sheet as improved materials for automotive applications. A laboratory processing route was designed that involves cold-rolling of a tempered martensite structure followed by a second tempering step to produce a fine grained aggregate of ferrite and ca...

متن کامل

Effects of Homogenization Conditions and Hot Rolling Parameters on Grain Refinement of an As-Cast 301 Stainless Steel

 In this work, effects of homogenization time of 3 to 13 h at 1200 °C on the grain refinement of as-cast AISI 301 stainless steel after different hot rolling conditions were investigated. The results showed that the minimum grain size of 16±7 mm was achieved when homogenization took place at 1200 °C for 9 h followed by hot rolling at temperature range of 1000–1200 °C with strain of 0.8 and stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004